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FOR MARKOV CHAINS

by

Leonidas Georgiadis and P. Papantoni-Kazakos
Department of Electrical Engineering and Computer Science

U-157
The University of Connecticut
Storrs, Connecticut 06268

Abstract

Generalized stationary Markov chains with denumerable state space are considered.

For irreducible and aperiodic such chains, some sufficient conditions for ergodicity

and steady-state equilibrium are developed. The conditions for ergodicity are

generalizations of previously proposed such conditions, and they are more tractable

for certain applications.
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1. Introduction

The analysis of several stochastic models gives rise to ergodicity and steady-

state equilibrium studies of Markov chains. When a Markov chain is irreducible and

aperiodic, with state space, C, and transition probabilities, {pji }, a necessary and

sufficient condition for ergodicity is that a solution of the following system exists.

" = p i i ; >0"; 0 i, E Ti =1

ieC iEC

The study of the above system requires explicit knowledge of all the transition

probabilities, {pi } , and for large dimensionality state spaces, C, the search for

its solution becomes practically impossible. Recognizing this fact, several re-

searchers provided simplified ergodicity conditions, for certain classes of Markov

chains. Pakes (1969) derived a sufficient condition for ergodicity of Markov

chains, {X}, that is solely based on the expected conditional drifts, E(Xn+Xn IXn-k}.

Kaplan (1979) provided a criterion for nonergodicity of a Markov chain, which is

again based on the expected conditional drifts, and on certain imposed conditions

on the transition probabilities. Szpankowski (1981) generalized the conditions given

by Pakes and Kaplan, using Lyapunov functions. Szpankowski's approach is especially

useful, when the Harkov chain state space is not the natural numbers.

In this paper, we generalize Szpankowski's sufficient conditions for ergodicity

of Markov chains. In addition, we provide conditions for steady-state equilibrium

of irreducible, aperiodic, and ergodic Markov chains, with denumerable state spaces.

2. Ergodicity Conditions

Let {X ) denote a generalized stationary Harkov chain, with denumerable state
n

space, C. We allow multidimensional states. Since the state space, C, is denumerable,

we assign a unique natural number to each state. Then, the expressions kEC and X =k

denote respectively, the state in C that has been assigned the natural number k, and

the nth in time (multidimensional) datum from the chain being identical to the state

identified as k. Let, {pek;Z, keC}, be the set of the stationary transition proba-

.. :I - - . . . : . . . . . - . - . .. . . : .. - . . : . : : . - : : :: : . : .. . . . . . - . . .
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bilities of the chain. That is,

AP(Yn+IfZIXn k) ; F, C

Let us denote,

(n)= P(X=tlx =k)
P4-k n 0

Let R denote the real line, and let V: C + R be a functional defined on the

state space, C, such that,

3 a :V(k) > a > - V; kcC (i)

Let us then define,

S(k) __ E{V(Xn+1 )-V(X)IX=k} = ( [V(t)-V(k)lplk ; kEC (2)

LcC

The quantity S(k) in (2) represents conditional expected drift of the Harkov

chain, {V(X,)). From now on, whenever the expected value, E{f(X,)} = f(Z)P(Xn /)

LeC

is used, for some functional, f C R, the implied assumptions will be that,

Sf(L) - 0 ; V A 0 0, and that at least one of the partial sums, E f(L)P(XnMt)
UCA t: f (t) <0

and E f(Z)P(Xn=t), is finite. The series, Ef(t)P(Xn=t), is then inambiguous,
'C: f (t) >0 zCC

and when it converges, it converges absolutely; that is, f(Xn) is then summable. We

now express two propositions.

Proposition 1

Let there exist t in C, and some positive finite number, b, such that,

V(t) < 0 MO P(Xo=) = 1 and S(k) < b ; V kCC

(n)
Then, for all n, the expected values, E{IV(Xn+1 )-V(Xn)I} 1) IS(k)Ip and

kEC

."J..... ..... ... . . , .. •. ,.. , : ..' .; .; ." ,T-:' ,,_. ' .- ,, ,,,a . ,-,. : . , ... -, , 
' ' ' '

,- - I , ,' w mi 
-''

,



3

pE{IV(Xknl} ,IV(t)ipk are both finite. Thus, in conjuction with (1), we
kEC

then obtain,

a < E{V(Xn+I) = E{V(Xn)l + E{V(X+ )-V(Xn } = E{V(X)} + S(k)pu) (3)

keC

Proof
Let, C-_ {k S(k) < 0} and C+  {k S(k) > 0}. Then, 0 < S(k)p ( <

kEC+

<b ( n b; thus, the series E S(k)p ) is then defined, for all n. That is,

ksC kCC+

E S( n)
"k£ < ;V n (4)

kgC+ -

Let us now turn to the variable V(Xn ). Due to (1) and the assumptions in the

proposition, we have, IV(L)I < -. Let us select n, and let us temporarily assume

that V(X ) is summable; that is, E Iv(k)IP(X =k) < ; VAc-C. Then, in conjuctionn n
kEA

with (1), we obtain,

S(k) > a - V(k)

Thus,

(n) (n)
0> S(k)pkt > a pk (n V n'PX k) > - ~ (5)
kkC k&C-

So, if V(X ) is summable, we conclude from (4) and (5),n
, (n) -(n) n

E{IV(X )-V(XM)I sk) ,S(k)p ( + C S(k)p ( (6)

kcC kEC- kCC+

Now, since V(Xn+I) IV(Xn+l)-V(X n) + V(Xn) , and starting with the initial condition,

IV(e) j < -, we can easily complete the proof of the proposition by induction,

observing that the summability of V(Xn) and V(Xn+ )-V(X ), implies summability of
V(X n+l-

4 " " .. • . . .•v (" .X ." . " "-".-"-""1 ) , ,,.'.,. ,, -,,...'.€, .,,, .s. - . -, -,' .- -
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Remark 1

If in proposition 1, the state l is such that, 0 < P(Xo--) < 1 and IV(f) i < 00,

the results in the proposition hold if, E{IV(Xn)I}, E{IV(X+I)-V(Xn )I), E{V(X)},

and E{V(Xn+)-V(Xn)} are respectively substituted by the conditional expectations,

E{IV(X) jlXo=Z}, E{IV(Xn+I)-V(X) fIxo -Z, E{V(X )IXo=ZI, and E{V(X +l)-V(X n)IX 0=-Z.

Proposition 2

Let there exist a positive finite number, b, such that, S(k) < b; V keC. Then,

S(k)p( ) > 0 V tC: P(Xo=) > 0 (7)
n kEC

Proof

Let us assume that (7) is false. Then, there exists some state tCC, such that

P(Xo=*) > 0, and for this state there exist 6 > 0 and natural number N6, such that,

SCk)p( <-6; V n>N6  (8)

keC

From expression (3) in proposition 1, modified as in remark 1, in conjuction

with (8), we then conclude,

E{V(Xn+ ) xo =Z < E{V(X n ) I X  - 6; V n > N

And thus,

E(V(XN +k) IXo--1 < E{V(x 6 ) IX=.L - k6 ; V k (9)

But, from proposition 1 we conclude, E{V(XN)X At} < -. Thus, (9) gives then,

tim E{V(X) jXo= } - which is impossible due to (3). We thus conclude that (7)

is true.

Remark 2

The statement in proposition 2 holds for any process, {Xn}, with denumerable

n

state space, whose expected drifts are time invariant, if E{IV(Xo ) M <Ca, and if

, ..- "."."
. .. . . " . ". .- .- ', ." , ,: " - "- *'.. -.* --*=- - '- ,'= ' ' ' - - " ' '
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(n)the probability, pkt in the proposition, is replaced by the probability, P(X k).
-K-n

We now express the main result of this section in a lemma. The lemma states

a sufficient condition, for ergodicity of a generalized irreducible and aperiodic

Markov chain.

Lemma 1

Let {X } be a generalized irreducible and aperiodic Markov chain, with denumerablen

state space, C. Let t be some state in C, such that, P(X =) > 0. Let there exist,

> 0, HICC, a set, fdk} , of positive finite constants, and a positive and finite

constant b, such that,

S(k) < - C; V kcH and - c < S(k) < b ; V kcH = C - H

d < and (n) < d V n, V kc2dk k - k 2 ndPkk-
W4 2

Then, the Markov chain, {Xn}, is ergodic.

Proof

Since the Markov chain is irreducible and aperiodic, the limit, 7rk A Zim ( n )

always exists, and it is independent of the state, £.

Now,

=S(k)p (n ((k) ( n )  - i- [ p (n) + (n)

F, k)P. )  + S(k) S  S(k)pkkC t kt - k kt
kEH1  k H2

Sincen (Sn))'(n
kCC ksH

2

Since ;(k)+Cp (n) < (b+c)d k ; V kEH 2 ; Vn, and d < 0, the series on the right

kcH2

side of (10) converges uniformly in n. Hence,

r . _ . . . . . . . . . , .-. . .- -.- ... . '.. .. . ..... . '. " ." . .' . . .' .- , .. .' " ''' : . .

{I¢; --, ,-, ' ' ..- ..'. , . ." .'. • .e ', ,,. .- -.- ", ", ", '-,'.: . ... a.: ' - -" "--''-- -
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.4.

ti (n) .. (n)

tim S(k)p) < - E + tim [S(k)+Elpkz = - c + [S(k)+s]rk (11)n-.o k -n,-E S) o 7f ( 1

* " kC kEH2  kEH 2

But, for the simultaneous satisfaction of inequality (11), and inequality (7)

in proposition 2, it is necessary that, E IS(k)+c]i k > 0, which implies that p ok >

ksH2

*~~e fo2mkn
for some k in H Thus, the chain is ergodic.

The conditions in the lemma are relatively general, and they imply the conditions

for ergodicity, given by Szpankowski (1981). In fact, the latter conditions evolve

as a corollary of lemma 1, which is expressed below.

Corollary 1

If the set H in the lemma is finite, then d = 1 ; V kcH,, satisfies the condition,
2 k

.:dk < Thus, the irreducible and aperiodic Markov chain, {X}, is then ergodic.
k n

3. Equilibrium Conditions

In this section, we consider steady-state equilibrium conditions, for generalized

irreducible and aperiodic Markov chains. We use the same notation and quantities, as

in section 2. We first present a proposition.

Proposition 3

Let, {Xn}, be a generalized, irreducible, and aperiodic Markov chain, with

denumerable state space, C. Let there exist a positive and finite constant, b, such

that, S(k) < b ; V kcC, and let the chain be ergodic. Then,

0 < S(k)T < b (12)

kEC

; where,

(n)
ok k/

n.L
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Proof

Let the subspaces, C+ and C-, be defined as in the proof of proposition 1.

We then obtain, for given n,

~(n) U (n) ' ()(n)~
T1 L S(k)p. 3. ~ (k)p~ + L...i <~

n- ° kEC keC - kSC +  /

(n)(n

< im E S(k)pkt + im S(k)pk) (13)
n-) kcC- w ksC +

Since, 0 < S(k) < b; V keC+, and since ( n) converges uniformly in n

kEC+

(n)(see Chung (1960), Th. 4), the sum, E S(k)pk ) , converges uniformly in n as well.

Thus, £im E S(k)pk)= ( S(k) Since S(k) < 0 ; V kcC-, applying Fatou's
n-)-m k£C+  kEC+

lemma, we obtain,

S S(k)p n < S _k r

n- kEC- kE0C-

From the above, in conjuction with (13), we thus obtain,

o < Tim E -(k)p kt < S(k)7Tk+ S M)rk (k) < <b
n keC keC- kEC k keC

The proof of the proposition is now complete.

We now express the main result of this section in a lemma.

Lemma 2

Let the generalized Markov chain, {X n}, be irreducible, aperiodic, and ergodic,

with denumerable state space, C. Let either one of the following conditions hold,

where V(.) is a functional as in section 2.

I U,
i ..[ ..... < .. . ...-. 1 .. ../ .., . [ ...o, .. " . : .. < : . [ .< .. . ..i [ ' . [ ' ' -il<. . . - . .".. . - . . . "
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IV(k) k <

kEC
A (n)

where p Z I
n-

(ii) There exists positive and finite number, B, such that,

E{IV(Xn+)-V(X) /Xn K <B V kC

Then,

ZS(k) k = 0 (14)

kE C

Proof

(a) If condition i) is satisfied, then V(Xo) and V(XI) are both integrable and

they have the same distribution, if P(X = k) = lk* Thus,

0 = EfV(XI)-V(X)} = E{E{V(XI)-V(X)X o }} = S(k)

ksC
which proves the lemma, if condition i) is true.

(b) Let condition (ii) be satisfied. Via proposition 3, the series S(k)k

converges absolutely. Thus (Chung (1960), Th. 2), keC

n

i'(Zim n-E S (X,) S =r (15)
i=0 keC

Let us now assume that there exists state Z in C, such that, P(X = Z) = 1.
0

Let then, Tk ; k > 0, denote the time of the kth visit to state R. The sequence,

4 {Tk }, forms a renewal process, and the process, {S(Xi)}, is regenerative with respect

to, {T k}. But, due to the ergodicity assumption, we have, E{T } < O, and,

IS(k)l = IE{V(X n+)-v(xn)IX n=kl-< E{IV(X n+)-V(Xn)I/Xn=kJ < B ; V kcC

Therefore,

'N . ... ....

"- -. ". ' ', ' -- .' '' " ".:''" • .- ," -" r:' ' - , N * N- *- "' % " .. ',... Na. J , - L ' 
' , - ' - -

-' -'
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E IE S(X)I < B Ef{T} < (16)

n=0

From Stidham (1972), and due to (16) we then conclude,

n T1-1

P~tim n l S(Xi) =El {Tl1 E 1 (X) 1 (17)

i=0 n=O

From (15) and (17), we then conclude,

T-1
11

E -  {T }  E :S (Xn)" = : S(k) f k  (8

keC

Given, P(X = 1) = 1, let us define,

n

Yn= [E{V(X)IX _l _ V(Xi)] n > 1 (19)

n-i n-I

Z n S(X,) - [{V(X, )IX} - V(X)] =-

i=0 i=0

[E1 {v(x 1) Ix1-1 I - v(x11l)J -=

1=1

n

E 2 [(E{v(X1 )IX i-} - V(xi)) + (v(x)-V(Xi-l))]
i=i

n

- X [V(Xi)-V(Xi-1) + Y = V(Xn)-V(Xo) + Y ; n > 1
I i=l

Z= v(x)-v(t) +Y ; n > 1 (20)
n n n

Due to proposition 1, we have, E{IV(X )II < ; V i. Due to the Markovian

assumption, we have, E{V(X ) I , ... ,X = E{V(X i ) X Thus, the process, {Y

in (19) is a martingale, with respect to the process, {Xn}, (see Karlin et al (1975),

. .. -. ... .n..' -. .. .



10

p. 240, ex. b). We now obtain,

IY n+1 - Yn = IE{V(X +l) )IX - V(X+I)I = IE{V(Xn+I ) - V(Xn) x nl -

-[V(X.+I) -V(Xn) I In+l - Yn < B + IV(Xn+I) -V (Xn) I

E{IY+l - Yn/Xn,...,Xo} < B + EJ{IV(Xn+) - V(Xn) I/ Xn,-",X}

= B + E{IV(Xn+I) - V(Xn )I/Xn } < 2 B ; V n > 1, due to condition (1i). (21)

Since now Ti is a Markov time with respect to {X }, and since E {T I < -, we
1 n 1

obtain in conjuction with (21) and corollary 3.1, page 260, in Karlin et al (1975),

E{YT} E(Y} = E{E{V(X1 )IXo - V(XI = 0 (22)

From (20) and (22), we then obtain,

E{ZT I=E{V(OI) 1 V() + YT 1 V) V(Z) + E{YT 1= 0 (23)

TI-1

From (20) and (23), we conclude, El E S(Xi) - 0; expression (18) thus gives,
i=0

S(k)rk = 0

kcC

The proof of the lemma is now complete.

* Remark 3

We note that conditions (i) and (ii), in lemma 2, are such that the one does

not imply the other. Condition (ii) does not involve limiting probabilities; thus,

it may be more applicable in practice. We note that in the proof of lemma 2, the

regenerative process, {S(Xi)}, may be such that, S(Xi) > - D, for some D positive

and finite. Then, the proof works, via the substitution, S'(X ) S(Xi) + D. In

contrast, the regenerative process, {S(X )I} has been assumed nonnegative in Stidman

(1972).

--6 , . . .. . . . . . . . . .... .. ... .. .. . . ...., , ... . -.. .

-_ : .--. . , - _,. , . . .._ - . . , . - . . - ..- ,.- . - . .. " , , , o , , , . , - - ". .
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Lemma 2 provides sufficient conditions for the existence of steady-state

equilibrium, in generalized, irreducible, aperiodic, and ergodic Harkov chains,

with denumerable state space.

4. An Example

One of the many applications of Markov chains lies with the analysis of "limited

feedback sensing" random access algorithms, for computer-communication data networks.

The "limited feedback sensing" class of random access algorithms requires that each

user monitor the feedback from the time he generates a new packet, to the time when

this packet is successfully transmitted, and it finds numerous applications in many

real systems. The algorithms within this class frequently induce irreducible and

aperiodic Markov chains, with denumerable state space. Sufficient conditions for

the ergodicity of those chains, provide then lower bounds on the throughput of the

algorithms. Sufficient conditions for steady state equilibrium, provide the means

for the evaluation of useful algorithmic statistical properties. Here, we will

use the results in lemma 2 of this paper, to evaluate such properties for one of the

algorithms in Vvedenskaya and Tsybakov (1982).

Let us consider algorithm A in Vvedenskaya and Tsybakov. The analysis of the

algorithm is facilitated by the concept of a marker, as described in the above

reference. The marker can take the integer values, -1, 0, 1, 2, .... If the

marker takes the value, -1, at some point in time, it maintains this value, until a

collision is encountered. Upon the occurrence of the latter event, the marker takes

the value, 1. From that point on, the marker updates its values, following the rules

of the algorithm, until it takes again the value, -1, at which point it completes a

session. It then repeats the above process. Let time be measured in slot units,
i

and let, Mi, denote the value of the marker at time, i. If Mi > 0, let 0k denote
9k

the number of packets that at time i are in cell #k of the stack, whose state

represents the algorithmic state. If Mi -1, let 0 1 denote the number of packets

in cell #0 of the stack. The numbers, { } land (Ml, are random variables. Let us

k i.
.....................................
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then define the random vector, x COo, 01, . 0 M. From the operation of the
S.0 Mi,

algorithm, it is easily concluded that the process, {Xi1 i > 0 is a Markov chain,

k

with state space, C f U Ck where,

k--1

Gk ff {[o , .,kk] C Nl 0 o ; k > 0

i[0_,-l]8_1 No}; k- -1

Since all the sets in Gk above are denumerable, so is C. Furthermore, the

process, {XiJ; i > 0, is irreducible and aperiodic.

Let, {O } and {m 1, denote respectively realizations of the sequences, (68}
k k

and {M i}. Given keC, let us then define,

IM
mkVA k

V(k) > 0

i= -l

It can be easily verified that, E{fV(Xi+l)-V(X ) =/Xi  kJ, satisfies condition

(ii) in lemma 2, and that,

E{v(Xi) - v(x 1)/x i = eo,. .. ,e,m]l X A • if 0 > 2
i+l -

z~i+l) -vxi/x =. [-,-1 - A ; if 0~ > 2

E{V(Xi+l ) V(x)/Xi ffi[1,8, 2 ,..., Em] }  -1 + X

E{V(Xi) - V(Xi)/X i = [,-i} , -i +
i+1 i x

E{V(Xi+I) - v(Xi)/X i - [0, 01 ,...,im]) - ,

E{V(Xi) - v(x)Ix M [1,-l] =
i+l i i

; where X is the intensity of the Poisson user process.

Thus, from lemma 2 and the above, we conclude that in the A - region, where the

" • .- ~~ ~. . " . . • ". "-. "-< * - . v -- ' . <.,



13

process, {X 1; i > 0, is ergodic, we have,
i

"" S (k Tkk = + +

~k)7 k:0 and 0 1k:O or 61=1

k
k:6 or e 1

0

The left part of the above equality represents the limiting probability of

successful transmission. The equation expresses then the fact that in the X - region,

where the process, {X 1 i > 0, is ergodic, the input traffic rate equals the output

traffic rate.

Given k in C, let us now define,

V'(k) V'e oel'**.P 1) A -

For the functional, V'(k), above, condition (ii) in lemma 2 is again satisfied,

and,

E{V'(X ) -V'(X)/X,- [0o,...,e,mJ1 - 1 ; if 0 > 2
i+l 0

E{V'(Xi+l) - V'(Xi)/xi = (e0,-xI} 2 ; if 06 _> 2

E(V'(X+) - V'(X )/X [1,01,. ,m]}- -1

E{V' (Xi+l  V (X ) I 0i , (0,...,e ,m]}= -

E{V'(X - Vi(X )/Xi [1,-l] 1 E{V'(X+) - V'(Xi)/X, - 0,-i]} - 0

Thus, from lemma 2 and the above, we conclude that in the ) - region, where the

process, {Xil; i > 0, is ergodic, we have,
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S r T +2 7r 7r 7 0°

kEC k:0 >2,m>O k:6 >2,m=-1 k:6 =l,m>O k:( 0,m>O0"- 1-- 0 0 

k:eo =0 or e0- k:m=-l

The left part of the above equation represents the limiting probability of an

empty slot. Also, W k = E-1{LI, where E{L} is the expected session length

k:m= -1
induced by the algorithm. Thus, the limiting probability of an empty slot can be

found from the above equation, as a function of the expected session length.

*. . - "- ."- . ". . - ..... ".. "., .. " ". .4"".""***...".".-.,.". . . " ,". .. '.? -- ," "...'
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